ORGANIC CHEMISTRY John McMurry

NINTH EDITION

9 Jnunoctium 10 **Ne** Neon 20.1797 36 Krypton 83.80 54 Xenon 131.29 2 Helium 4.0026 18 **Ar** Argon 39.948 86 Radon (222) 118 **Uuo** 8A (18) g 102 Nobelium (259) Ytterbium 173.04 Iuorine 18.9984 17 Chlorine 35.4527 53 | | lodine 126.9045 35 Br Bromine 79.904 85 At Astatine 117 Uus ۶ **ع** (210) 7A (17) റ 止 Thulium 168.9342 Tellurium 127.60 8 Oxygen 15.9994 34 Selenium 78.96 Polonium 16 **S** Sulfur 32.066 <mark>≞</mark> ® ۲^و (258) endelev 6A (16) **۹** 8 (209) 116 T 116 (292) 51 Sb Antimony 121.757 7 Nitrogen 14.0067 15 Phosphoru 30.9738 33 As Arsenic 74.9216 83 **Bi** Bismuth 208.9804 Fermium Erbium 167.26 115 **Uup ₽** <u></u>3 (257) 5A (15) 8 🗖 32 Ge Germanium Holmium 164.9303 114 Flerovium 6 Carbon 12.011 14 Silicon 28.0855 50 **Sn** Tin 118.710 67 67 82 Pb Lead 207.2 Einsteiniu (252) 4A (14) 72.61 (289) 8 <mark>1</mark> 13 Aluminum 26.9815 Dysprosiun 49 Indium 114.82 81 Thallium 204.3833 31 Gallium 69.723 162.50 5 **B** Boron 10.811 **Uut** Ununtriu Californiu (251) 3A (13) ⁸ 8 <mark>0</mark> 48 Cadmium 112.411 Terbium 158.9253 80 Hg Mercury 200.59 112 Coperniciur 97 **Ber**keliur 30 Zinc 65.39 (247) (285) 29 <mark>1</mark> 82 Semimetals 2B (12) Nonmetals Metals 111 Roentgeni 47 **Ag** Silver 107.8682 79 **Au** Gold 196.9665 Gadolium 157.25 96 Curium (247) 29 Copper 63.546 64 64 (280) 1B (<u>1</u> Americium (243) 46 Pd Palladium 106.42 Europium 78 Platinum 151.965 88 (10) 28 Nickel 58.693 195.08 8 <mark>1</mark> **Am** 95 110 DS Instadti (281) Atomic number Atomic mass 94 Putonium (244) Samarium 150.36 45 Rh Rhodium 102.9055 27 **Co** Cobalt 58.9332 7 Iridium 192.22 Sm Sm 109 Mt Meitneriu (276) 88 (6) Symbol Name 93 Neptunium (237) Ruthenium 101.07 76 Osmium 108 Hassium 26 **Fe** Iron 55.847 **Bu** 44 190.2 ₽ <mark>₽</mark> methi (145) (270) 88 (8) 79 Au Gold 196.9665 25 Manganese 54.9380 echnetium 107 **Bh** Bohrium Uranium 238.00289 An element Rhenium 144.24 186.207 8 <mark>9</mark> leodymi ₽£ 8 <mark>1</mark>2 (86) **۳** ک (272) 6 ⊃ 231.0359 24 Cr Chromium 140.9076 Protactiniur Key 74 W Tungsten 183.85 106 Sg Seaborgiur olybdenu 95.94 51.9961 9 9 8 <mark>8</mark> aseodyn (9) (9) (271) ස 📥 105 Db Dubnium Cerium 140.115 Thorium 232.0381 /anadium Niobium 92.9064 Fantalum 50.9415 180.9479 8 <mark>8</mark> 8 8 **F** (268) ₽<mark>₿</mark> **д** 3 (5) ສ> Lanthanum 138.9055 Zirconium 91.224 89 Ac Actinium Titanium 47.88 Hafnium (227) Rutherfordi 178.49 (267) **ت** ی 9 <mark>7</mark> 8 **₽** 3 ₫ 4 (4) (4) ଷ ⊨ 9 7 21 Scandium 44.9559 71 Lutetium 174.967 Yttrium 38.9059 103 Lr wrenciu ଞ **>** (260) B 🕄 Lanthanides Actinides 12 Mgnesium 24.3050 4 Beryllium 9.0122 38 Strontium 87.62 20 Calcium 40.078 56 Ba Barium 137.327 88 Radium 227.0278 5 S Numbers in parentheses 19 K Potassium 39.0983 37 **Rb** Rubidium 85.4678 87 Francium (223) Hydrogen 3 Lithium 6.941 11 Sodium 22.9898 55 Cesium 132.9054 1.0079 are mass numbers of radioactive isotopes. 41 (E) -I IUPAC system ~ (0 Group number, U.S. system number Period -

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5 REASONS to buy your textbooks and course materials at CENGAGE**brain**

SAVINGS:

Prices up to 75% off, daily coupons, and free shipping on orders over \$25

CHOICE:

Multiple format options including textbook, eBook and eChapter rentals

CONVENIENCE:

Anytime, anywhere access of eBooks or eChapters via mobile devices

SERVICE:

Free eBook access while your text ships, and instant access to online homework products

STUDY TOOLS:

Study tools^{*} for your text, plus writing, research, career and job search resources **availability varies*

Find your course materials and start saving at: www.cengagebrain.com

Source Code: 14M-AA0107

Engaged with you. www.cengage.com

> Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Organic Chemistry

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBeok and/or eC hapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions requi

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Ninth Edition

Organic Chemistry

CORNELL UNIVERSITY

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions requi

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit <u>www.cengage.com/highered</u> to search by ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

CENGAGE Learning

Organic Chemistry, Ninth Edition John McMurry

Product Director: Mary Finch Product Manager: Maureen Rosener Content Developers: Nat Chen, Lisa Weber Product Assistant: Morgan Carney Marketing Manager: Julie Schuster Content Project Manager: Teresa Trego Art Director: Andrei Pasternak Manufacturing Planner: Judy Inouye Production Service: Graphic World Inc. Photo Researcher: Lumina Datamatics Text Researcher: Lumina Datamatics Copy Editor: Graphic World Inc. Text Designer: Parallelogram Graphics Cover Designer: Cheryl Carrington Cover Image: Imagebroker.net/SuperStock Compositor: Graphic World Inc.

© 2016, 2012, Cengage Learning WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions.** Further permissions questions can be e-mailed to **permissionrequest@cengage.com.**

Library of Congress Control Number: 2014960022 Student Edition: ISBN: 978-1-305-08048-5 Loose-leaf Edition: ISBN: 978-1-305-63871-6

Cengage Learning

20 Channel Center Street Boston, MA 02210 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at **www.cengage.com/global.**

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit **www.cengage.com**.

Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com.**

Printed in the United States of America Print Number: 01 Print Year: 2015

BRIEF CONTENTS

1	Structure and Bonding	1
2	Polar Covalent Bonds; Acids and Bases	28
3	Organic Compounds: Alkanes and Their Stereochemistry	60
4	Organic Compounds: Cycloalkanes and Their Stereochemistry	89
5	Stereochemistry at Tetrahedral Centers	115
6	An Overview of Organic Reactions	149
	Practice Your Scientific Analysis and Reasoning I: The Chiral Drug Thalidomide	182
7	Alkenes: Structure and Reactivity	185
8	Alkenes: Reactions and Synthesis	220
9	Alkynes: An Introduction to Organic Synthesis	263
10	Organohalides	287
11	Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations	309
	Practice Your Scientific Analysis and Reasoning II: From Mustard Gas to Alkylating Anticancer Drugs	351
12	Structure Determination: Mass Spectrometry and Infrared Spectroscopy	354
13	Structure Determination: Nuclear Magnetic Resonance Spectroscopy	386
14	Conjugated Compounds and Ultraviolet Spectroscopy	420
	Practice Your Scientific Analysis and Reasoning III: Photodynamic Therapy (PDT)	448
15	Benzene and Aromaticity	451
16	Chemistry of Benzene: Electrophilic Aromatic Substitution	478
17	Alcohols and Phenols	525
18	Ethers and Epoxides; Thiols and Sulfides	568
•	Preview of Carbonyl Chemistry	595
19	Aldehydes and Ketones: Nucleophilic Addition Reactions	604
	Practice Your Scientific Analysis and Reasoning IV: Selective Serotonin Reuptake Inhibitors (SSRIs)	649
20	Carboxylic Acids and Nitriles	653
21	Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions	679
22	Carbonyl Alpha-Substitution Reactions	727

v

BRIEF CONTENTS

23	Carbony	Condensation Reactions	753
	Practice	Your Scientific Analysis and Reasoning V: Thymine in DNA	784
24	Amines	and Heterocycles	787
25	Biomole	cules: Carbohydrates	832
26	Biomole	cules: Amino Acids, Peptides, and Proteins	870
27	Biomole	cules: Lipids	907
	Practice	Your Scientific Analysis and Reasoning VI: Melatonin and Serotonin	939
28	Biomole	cules: Nucleic Acids	942
29	The Org	anic Chemistry of Metabolic Pathways	964
30	Orbitals	and Organic Chemistry: Pericyclic Reactions	1013
	Practice Traits of	Your Scientific Analysis and Reasoning VII: The Potent Antibiotic Endiandric Acid C	1034
31	Syntheti	c Polymers	1037
Арр	endix A:	Nomenclature of Polyfunctional Organic Compounds	A-1
Арр	endix B:	Acidity Constants for Some Organic Compounds	A-9
Арр	endix C:	Glossary	A-11
Арр	endix D:	Answers to In-Text Problems	A-31

Index

I-1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Structure and Bonding

1-1	Atomic Structure: The Nucleus	3		
1-2	Atomic Structure: Orbitals	4		
1-3	Atomic Structure: Electron Configurations	6		
]-4	Development of Chemical Bonding Theory	7		
1-5	Describing Chemical Bonds: Valence Bond Theory	10		
1-6	sp^3 Hybrid Orbitals and the Structure of Methane	12		
1-7	sp^3 Hybrid Orbitals and the Structure of Ethane	13		
1-8	sp^2 Hybrid Orbitals and the Structure of Ethylene	14		
1-9	sp Hybrid Orbitals and the Structure of Acetylene			
1-10	Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur	18		
1-11	Describing Chemical Bonds: Molecular Orbital Theory	20		
1-12	Drawing Chemical Structures	21		
	SOMETHING EXTRA Organic Foods: Risk versus Benefit	25		
	Summary	26		
	Key words	26		
	Working Problems	27		
	Exercises	27a		

Polar Covalent Bonds; Acids and Bases 28

2-8	Acid and Base Strength	44
2-9	Predicting Acid–Base Reactions from pK _a Values	46
2-10	Organic Acids and Organic Bases	47
2-11	Acids and Bases: The Lewis Definition	50
2-12	Noncovalent Interactions between Molecules	54
	SOMETHING EXTRA Alkaloids: From Cocaine	
	to Dental Anesthetics	56
	Summary	58
	Key words	58
	Exercises	59

Organic Compounds: Alkanes and Their Stereochemistry | 60

k. com	3-1	Functional Groups	60
tterstoo	3-2	Alkanes and Alkane Isomers	66
Shu ott	3-3	Alkyl Groups	70
CHAPTER	3-4	Naming Alkanes	73
3	3-5	Properties of Alkanes	78
	3-6	Conformations of Ethane	80
	3-7	Conformations of Other Alkanes	82
		SOMETHING EXTRA Gasoline	86
		Summary	87
		Key words	87
		Exercises	88

Organic Compounds: Cycloalkanes and

Their Stereochemistry | 89

		4-1	Naming Cycloalkanes	90
my	CHAPTER	4-2	Cis–Trans Isomerism in Cycloalkanes	92
Ala		4-3	Stability of Cycloalkanes: Ring Strain	95
		4-4	Conformations of Cycloalkanes	97
	4	4-5	Conformations of Cyclohexane	99
		4-6	Axial and Equatorial Bonds in Cyclohexane	101

4-7	Conformations of Mon	osubstituted Cyclohexanes	104
4-8	Conformations of Disu	107	
4-9	Conformations of Poly	cyclic Molecules	110
	SOMETHING EXTRA	Molecular Mechanics	113
	Summary		114
	Key words		114
	Exercises		114a

Stereochemistry at Tetrahedral Centers | 115

©Aspen Photo/ Shutterstock.com

CHAPTER

CHAPTER

5-1	Enantiomers and the Tetrahedral Carbon	116
5-2	The Reason for Handedness in Molecules: Chirality	117
5-3	Optical Activity	121
5-4	Pasteur's Discovery of Enantiomers	123
5-5	Sequence Rules for Specifying Configuration	124
5-6	Diastereomers	131
5-7	Meso Compounds	133
5-8	Racemic Mixtures and the Resolution of Enantiomers	135
5-9	A Review of Isomerism	138
5-10	Chirality at Nitrogen, Phosphorus, and Sulfur	140
5-11	Prochirality	141
5-12	Chirality in Nature and Chiral Environments	145
	SOMETHING EXTRA Chiral Drugs	147
	Summary	148
	Key words	148
	Exercises	148a

An Overview of Organic Reactions | 149

6-1	Kinds of Organic Reactions	149
6-2	How Organic Reactions Occur: Mechanisms	151
6-3	Radical Reactions	152
6-4	Polar Reactions	155
6-5	An Example of a Polar Reaction: Addition of HBr to Ethylene	159
6-6	Using Curved Arrows in Polar Reaction Mechanisms	162

©JIANHAD GUAN/

6-7	Describing a Reaction: Equilibria, Rates, and Energy Changes	165
6-8	Describing a Reaction: Bond Dissociation Energies	169
6-9	Describing a Reaction: Energy Diagrams and Transition States	171
6-10	Describing a Reaction: Intermediates	174
6-11	A Comparison Between Biological Reactions and Laboratory Reactions	177
	SOMETHING EXTRA Where Do Drugs Come From?	179
	Summary	181
	Key words	181
	Exercises	181a

Practice Your Scientific Analysis and Reasoning I The Chiral Drug Thalidomide | 182

Alkenes: Structure and Reactivity | 185

Ke og	7-1	Industrial Preparation and Use of Alkenes	186
tter stoo	7-2	Calculating Degree of Unsaturation	187
han a second sec	7-3	Naming Alkenes	189
CHAPTER	7-4	Cis-Trans Isomerism in Alkenes	192
7	7-5	Alkene Stereochemistry and the <i>E</i> , <i>Z</i> Designation	194
	7-6	Stability of Alkenes	198
	7-7	Electrophilic Addition Reactions of Alkenes	201
	7-8	Orientation of Electrophilic Additions: Markovnikov's Rule	205
	7-9	Carbocation Structure and Stability	208
	7-10	The Hammond Postulate	211
	7-11	Evidence for the Mechanism of Electrophilic	
		Additions: Carbocation Rearrangements	214
		SOMETHING EXTRA Bioprospecting: Hunting	
		for Natural Products	217
		Summary	218
		Key words	218
		Exercises	219

Alkenes: Reactions and Synthesis | 220

Preparing Alkenes: A Preview of Elimination Reactions	221
Halogenation of Alkenes: Addition of X_2	222
Halohydrins from Alkenes: Addition of HOX	225
Hydration of Alkenes: Addition of H_2O by Oxymercuration	227
Hydration of Alkenes: Addition of H_2O by Hydroboration	230
Reduction of Alkenes: Hydrogenation	235
Oxidation of Alkenes: Epoxidation and Hydroxylation	239
Oxidation of Alkenes: Cleavage to Carbonyl Compounds	242
Addition of Carbenes to Alkenes: Cyclopropane Synthesis	245
Radical Additions to Alkenes: Chain-Growth Polymers	247
Biological Additions of Radicals to Alkenes	251
Reaction Stereochemistry: Addition of H_2O to an Achiral Alkene	252
Reaction Stereochemistry: Addition of H_2O to a Chiral Alkene	255
SOMETHING EXTRA Terpenes: Naturally Occurring Alkenes	257
Summary	259
Key words	259
Learning Reactions	260
Summary of Reactions	260
Exercises	262
	 Preparing Alkenes: A Preview of Elimination Reactions Halogenation of Alkenes: Addition of X2 Halohydrins from Alkenes: Addition of HOX Hydration of Alkenes: Addition of H2O by Oxymercuration Hydration of Alkenes: Addition of H2O by Hydroboration Reduction of Alkenes: Hydrogenation Oxidation of Alkenes: Epoxidation and Hydroxylation Oxidation of Alkenes: Cleavage to Carbonyl Compounds Addition of Carbenes to Alkenes: Cyclopropane Synthesis Radical Additions to Alkenes: Chain-Growth Polymers Biological Additions of Radicals to Alkenes Reaction Stereochemistry: Addition of H2O to a Chiral Alkene SOMETHING EXTRA Terpenes: Naturally Occurring Alkenes Summary Key words Learning Reactions Summary of Reactions Exercises

Alkynes: An Introduction to Organic Synthesis | 263

Ed Darack/ Science Faction/

CHAPTER

9-1	Naming Alkynes	264
9-2	Preparation of Alkynes: Elimination Reactions of Dihalides	265
9-3	Reactions of Alkynes: Addition of HX and X_2	265
9-4	Hydration of Alkynes	268
9-5	Reduction of Alkynes	272
9-6	Oxidative Cleavage of Alkynes	275
9-7	Alkyne Acidity: Formation of Acetylide Anions	275
9-8	Alkylation of Acetylide Anions	277
9-9	An Introduction to Organic Synthesis	279
	SOMETHING EXTRA The Art of Organic Synthesis	283

Sebastián Crespo Photography/ Getty Images

Summary	284
Key words	284
Summary of Reactions	285
Exercises	286a

288

290

292

294

297

298

300

303

305

307

307

307

308

Organohalides | 287

Names and Structures of Alkyl Halides 10-1 Preparing Alkyl Halides from Alkanes: Radical Halogenation 10-2 Preparing Alkyl Halides from Alkenes: Allylic Bromination 10-3 CHAPTER 10-4 Stability of the Allyl Radical: Resonance Revisited 10-5 Preparing Alkyl Halides from Alcohols Reactions of Alkyl Halides: Grignard Reagents 10-6 10-7 Organometallic Coupling Reactions 10-8 Oxidation and Reduction in Organic Chemistry **SOMETHING EXTRA** Naturally Occurring Organohalides Summary Key words Summary of Reactions

Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations 309

Exercises

Martin Harvey, Getty Images CHAPTER

11-1	The Discovery of Nucleophilic Substitution Reactions	310
11-2	The S _N 2 Reaction	313
11-3	Characteristics of the S _N 2 Reaction	316
11-4	The S _N 1 Reaction	323
11-5	Characteristics of the S _N 1 Reaction	327
11-6	Biological Substitution Reactions	333
11-7	Elimination Reactions: Zaitsev's Rule	335
11-8	The E2 Reaction and the Deuterium Isotope Effect	338
11-9	The E2 Reaction and Cyclohexane Conformation	341
11-10	The E1 and E1cB Reactions	343
11-11	Biological Elimination Reactions	345
11-12	A Summary of Reactivity: S_N 1, S_N 2, E1, E1cB, and E2	345

SOMETHING EXTRA	Green Chemistry	347
Summary		349
Key words		349
Summary of Reactions		350
Exercises		350a

Practice Your Scientific Analysis and Reasoning II From Mustard Gas to Alkylating Anticancer Drugs | 351

Structure Determination: Mass Spectrometry and Infrared Spectroscopy 354

s s		12-1	Mass Spectrometry of Small Molecules:	
iEni's pt y Image			Magnetic-Sector Instruments	355
Gett		12-2	Interpreting Mass Spectra	357
	CHAPTER	12-3	Mass Spectrometry of Some Common Functional Groups	362
	12	12-4	Mass Spectrometry in Biological Chemistry:	
			Time-of-Flight (TOF) Instruments	367
		12-5	Spectroscopy and the Electromagnetic Spectrum	368
		12-6	Infrared Spectroscopy	371
		12-7	Interpreting Infrared Spectra	373
		12-8	Infrared Spectra of Some Common Functional Groups	376
			SOMETHING EXTRA X-Ray Crystallography	384
			Summary	385
			Key words	385
			Exercises	385

Structure Determination: Nuclear Magnetic Resonance Spectroscopy 386

©EM Karuna/ Shutterstock.com	CHAPTER	13-1	Nuclear Magnetic Resonance Spectroscopy	386
		13-2	The Nature of NMR Absorptions	389
		13-3	The Chemical Shift	392
		13-4	Chemical Shifts in ¹ H NMR Spectroscopy	394
	13	13-5	Integration of ¹ H NMR Absorptions: Proton Counting	396

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13-6	Spin–Spin Splitting in ¹ H	NMR Spectra	397		
13-7	¹ H NMR Spectroscopy a	nd Proton Equivalence	402		
13-8	More Complex Spin–Spi	n Splitting Patterns	404		
13-9	Uses of ¹ H NMR Spectro	озсору	407		
13-10	¹³ C NMR Spectroscopy:	Signal Averaging and FT-NMR	408		
13-11	Characteristics of ¹³ C NMR Spectroscopy				
13-12	DEPT ¹³ C NMR Spectroscopy				
13-13	Uses of ¹³ C NMR Spectr	oscopy	416		
	SOMETHING EXTRA	Magnetic Resonance Imaging (MRI)	417		
	Summary		418		
	Key words		418		
	Exercises		419		

Conjugated Compounds and Ultraviolet

Spectroscopy 420

447a

Practice Your Scientific Analysis and Reasoning III Photodynamic Therapy (PDT) | 448

Benzene and Aromaticity | 451

5-1	Naming Aromatic Compounds		
5-2	Structure and Stability of Benzene	456	
5-3	Aromaticity and the Hückel $4n + 2$ Rule	459	
5-4	Aromatic lons	461	
5-5	Aromatic Heterocycles: Pyridine and Pyrrole	464	
5-6	Polycyclic Aromatic Compounds		
5-7	Spectroscopy of Aromatic Compounds	469	
	SOMETHING EXTRA Aspirin, NSAIDs, and COX-2 Inhibitors	474	
	Summary	476	
	Key words	476	
	Exercises	477	

Chemistry of Benzene: Electrophilic Aromatic Substitution | 478

Niday Picture Ibiary / Alamy

16-1	Electrophilic Aromatic Substitution Reactions: Bromination	479		
16-2	Other Aromatic Substitutions	482		
16-3	Alkylation and Acylation of Aromatic Rings:			
	The Friedel–Crafts Reaction	488		
16-4	Substituent Effects in Electrophilic Substitutions	493		
16-5	Trisubstituted Benzenes: Additivity of Effects	503		
16-6	Nucleophilic Aromatic Substitution	505		
16-7	Benzyne			
16-8	Oxidation of Aromatic Compounds	510		
16-9	Reduction of Aromatic Compounds	513		
16-10	Synthesis of Polysubstituted Benzenes	514		
	SOMETHING EXTRA Combinatorial Chemistry	519		
	Summary	521		
	Key words	521		
	Summary of Reactions	522		
	Exercises	524		

Meiko Kiera

Alcohols and Phenols 525

CON-17-	17-1	Naming Alcohols and Phenols	526
500 M	17-2	Properties of Alcohols and Phenols	528
	17-3	Preparation of Alcohols: A Review	533
HAPTER	17-4	Alcohols from Carbonyl Compounds: Reduction	535
17	17-5	Alcohols from Carbonyl Compounds: Grignard Reaction	539
	17-6	Reactions of Alcohols	543
	17-7	Oxidation of Alcohols	550
	17-8	Protection of Alcohols	553
	17-9	Phenols and Their Uses	555
	17-10	Reactions of Phenols	557
	17-11	Spectroscopy of Alcohols and Phenols	559
		SOMETHING EXTRA Ethanol: Chemical, Drug, Poison	563
		Summary	564
		Key words	564
		Summary of Reactions	565
		Exercises	567

Ethers and Epoxides; Thiols and Sulfides 568

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preview of Carbonyl Chemistry | 595

Ι	Kinds of Carbonyl Compounds	595
	Nature of the Carbonyl Group	597
	General Reactions of Carbonyl Compounds	597
IV	Summary	603

Aldehydes and Ketones: Nucleophilic Addition Reactions | 604

1

9-1	Naming Aldehydes and Ketones	605
9-2	Preparing Aldehydes and Ketones	607
9-3	Oxidation of Aldehydes and Ketones	609
9-4	Nucleophilic Addition Reactions of Aldehydes and Ketones	610
9-5	Nucleophilic Addition of H_2O : Hydration	614
9-6	Nucleophilic Addition of HCN: Cyanohydrin Formation	616
9-7	Nucleophilic Addition of Hydride and Grignard Reagents:	617
0 0	Nucleaphilic Addition of Aminac: Imina and Enamina Earmation	(10
9-0	Nucleophilic Addition of Annines. Infine and Enamine Formation	619
9-9	Nucleophilic Addition of Hydrazine: The Wolff–Kishner Reaction	624
9-10	Nucleophilic Addition of Alcohols: Acetal Formation	626
9-11	Nucleophilic Addition of Phosphorus Ylides: The Wittig Reaction	630
9-12	Biological Reductions	633
9-13	Conjugate Nucleophilic Addition to $lpha,eta$ -Unsaturated	
	Aldehydes and Ketones	635
9-14	Spectroscopy of Aldehydes and Ketones	640
	SOMETHING EXTRA Enantioselective Synthesis	644
	Summary	646
	Key words	646
	Summary of Reactions	646
	Exercises	648a

Practice Your Scientific Analysis and Reasoning IV Selective Serotonin Reuptake Inhibitors (SSRIs) | 649

©Marie C Fields/ Shutterstock.com

©Greg Epperson/ Shutterstock.com

CHAPTE

Carboxylic Acids and Nitriles | 653

	20-1	Naming Carboxylic Acids and Nitriles	654
	20-2	Structure and Properties of Carboxylic Acids	656
	20-3	Biological Acids and the Henderson–Hasselbalch Equation	660
CHAPTER	20-4	Substituent Effects on Acidity	661
20	20-5	Preparing Carboxylic Acids	664
	20-6	Reactions of Carboxylic Acids: An Overview	667
	20-7	Chemistry of Nitriles	668
	20-8	Spectroscopy of Carboxylic Acids and Nitriles	672
		SOMETHING EXTRA Vitamin C	674
		Summary	676
		Key words	676
		Summary of Reactions	677
		Exercises	678

Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions | 679

	21-1	Naming Carboxylic Acid Derivatives	680
	21-2	Nucleophilic Acyl Substitution Reactions	683
	21-3	Reactions of Carboxylic Acids	688
R	21-4	Chemistry of Acid Halides	696
	21-5	Chemistry of Acid Anhydrides	701
	21-6	Chemistry of Esters	703
	21-7	Chemistry of Amides	709
	21-8	Chemistry of Thioesters and Acyl Phosphates:	
		Biological Carboxylic Acid Derivatives	713
	21-9	Polyamides and Polyesters: Step-Growth Polymers	715
	21-10	Spectroscopy of Carboxylic Acid Derivatives	718
		SOMETHING EXTRA β -Lactam Antibiotics	721
		Summary	723
		Key words	723
		Summary of Reactions	723
		Exercises	726

Carbonyl Alpha-Substitution Reactions | 727

22-1	Keto–Enol Tautomerism	728
22-2	Reactivity of Enols: $lpha$ -Substitution Reactions	730
22-3	Alpha Halogenation of Aldehydes and Ketones	731
22-4	Alpha Bromination of Carboxylic Acids	734
22-5	Acidity of Alpha Hydrogen Atoms: Enolate Ion Formation	735
22-6	Reactivity of Enolate Ions	738
22-7	Alkylation of Enolate Ions	
	SOMETHING EXTRA Barbiturates	748
	Summary	750
	Key words	
	Summary of Reactions	751
	Exercises	752

Carbonyl Condensation Reactions | 753

OTIschenko Irina,

ock.com

CHAPTER

Practice Your Scientific Analysis and Reasoning V Thymine in DNA | 784

Amines and Heterocycles | 787

24-1Naming Amines24-2Structure and Properties of24-3Basicity of Amines24-3Basicity of Arylamines24-4Basicity of Arylamines24-5Biological Amines and the24-6Synthesis of Amines24-7Reactions of Amines

24-2	Structure and Propertie	es of Amines	790
24-3	Basicity of Amines		792
24-4	Basicity of Arylamines		795
24-5	Biological Amines and	the Henderson–Hasselbalch Equation	797
24-6	Synthesis of Amines		798
<u>2</u> 4-7	Reactions of Amines		806
24-8	Reactions of Arylamine	S	810
24-9	Heterocyclic Amines		816
24-10	Spectroscopy of Amine	S	823
	SOMETHING EXTRA	Green Chemistry II: Ionic Liquids	826
	Summary		828
	Key words		828
	Summary of Reactions		830
	Exercises		831a

787

Biomolecules: Carbohydrates | 832

25-1 Classification of Carbohydrates 833 Representing Carbohydrate Stereochemistry: Fischer Projections 25-2 834 25-3 D,L Sugars 838 25-4 Configurations of the Aldoses 840 25-5 Cyclic Structures of Monosaccharides: Anomers 844 25-6 Reactions of Monosaccharides 848 The Eight Essential Monosaccharides 25-7 856 25-8 Disaccharides 858 25-9 Polysaccharides and Their Synthesis 861 Some Other Important Carbohydrates 25-10 864 Cell-Surface Carbohydrates and Influenza Viruses 25-11 864 SOMETHING EXTRA Sweetness 866

Summary	868
Key words	868
Summary of Reactions	869
Exercises	869

Biomolecules: Amino Acids, Peptides, and Proteins 870

Stuart Cox/V&A Images / Alamy

26

26-1	Structures of Amino Acids	871
26-2	Amino Acids and the Henderson–Hasselbalch Equation:	
	Isoelectric Points	876
26-3	Synthesis of Amino Acids	879
26-4	Peptides and Proteins	881
26-5	Amino Acid Analysis of Peptides	884
26-6	Peptide Sequencing: The Edman Degradation	885
26-7	Peptide Synthesis	888
26-8	Automated Peptide Synthesis: The Merrifield	
	Solid-Phase Method	890
26-9	Protein Structure	893
26-10	Enzymes and Coenzymes	895
26-11	How Do Enzymes Work? Citrate Synthase	898
	SOMETHING EXTRA The Protein Data Bank	903
	Summary	904
	Key words	904
	Summary of Reactions	905
	Exercises	906a

Biomolecules: Lipids | 907

СНИ

	27-1	Waxes, Fats, and Oils	908
	27-2	Soap	911
	27-3	Phospholipids	913
APTER	27-4	Prostaglandins and Other Eicosanoids	915
	27-5	Terpenoids	917
- /	27-6	Steroids	926
	27-7	Biosynthesis of Steroids	930

SOMETHING EXTRA	Saturated Fats, Cholesterol,	
	and Heart Disease	937
Summary		938
Key words		938
Exercises		938a

Practice Your Scientific Analysis and Reasoning VI Melatonin and Serotonin | 939

Biomolecules: Nucleic Acids | 942

Nucleotides and Nucleic Acids 28-1 942 28-2 Base Pairing in DNA: The Watson–Crick Model 945 Replication of DNA 28-3 947 Transcription of DNA 28-4 949 28-5 Translation of RNA: Protein Biosynthesis 951 28-6 **DNA** Sequencing 954 **DNA** Synthesis 28-7 956 28-8 The Polymerase Chain Reaction 959 SOMETHING EXTRA DNA Fingerprinting 961 Summary 962 Key words 962 Exercises 963

The Organic Chemistry of Metabolic Pathways 964

6	29-1	An Overview of Metabolism and Biochemical Energy	964
1	29-2	Catabolism of Triacylglycerols: The Fate of Glycerol	968
	29-3	Catabolism of Triacylglycerols: $oldsymbol{eta}$ -Oxidation	972
	29-4	Biosynthesis of Fatty Acids	977
	29-5	Catabolism of Carbohydrates: Glycolysis	982
	29-6	Conversion of Pyruvate to Acetyl CoA	990
	29-7	The Citric Acid Cycle	993
	29-8	Carbohydrate Biosynthesis: Gluconeogenesis	998
	29-9	Catabolism of Proteins: Deamination	1005

CHAPTER

29-10	Some Conclusions abo	ut Biological Chemistry	1009
	SOMETHING EXTRA	Statin Drugs	1010
	Summary		1011
	Key words		1011
	Exercises		1012

Orbitals and Organic Chemistry: Pericyclic Reactions | 1013

Molecular Orbitals of Conjugated Pi Systems 30-1 1013 30-2 **Electrocyclic Reactions** 1016 30-3 Stereochemistry of Thermal Electrocyclic Reactions 1018 CHAPTER 30-4 Photochemical Electrocyclic Reactions 1020 30-5 Cycloaddition Reactions 1021 30-6 Stereochemistry of Cycloadditions 1023 30-7 Sigmatropic Rearrangements 1025 30-8 Some Examples of Sigmatropic Rearrangements 1027 30-9 A Summary of Rules for Pericyclic Reactions 1030 **SOMETHING EXTRA** Vitamin D, the Sunshine Vitamin 1031 Summary 1032 Key words 1032 Exercises 1033

Practice Your Scientific Analysis and Reasoning VII The Potent Antibiotic Traits of Endiandric Acid C | 1034

Synthetic Polyn	ners	1037	
	31-1	Chain-Growth Polymers	1037
ty Image	31-2	Stereochemistry of Polymerization: Ziegler–Natta Catalysts	1040
Get IIm	31-3	Copolymers	1041
CHAPTER	31-4	Step-Growth Polymers	1043
31	31-5	Olefin Metathesis Polymerization	1046
51	31-6	Polymer Structure and Physical Properties	1048

xxiv contents

SOME	THING EXTRA Biodegradable Polymers	1052
Summa	ary	1053
Key wo	rds	1053
Exercis	es	1054
APPENDIX A:	Nomenclature of Polyfunctional Organic Compounds	A-1
APPENDIX B:	Acidity Constants for Some Organic Compounds	A-9
APPENDIX C:	Glossary	A-11
APPENDIX D:	Answers to In-Text Problems	A-31
INDEX		1-1

PREFACE

I love writing, and I love explaining organic chemistry. This book is now in its ninth edition, but I'm still going over every word and every explanation, updating a thousand small details and trying to improve everything. My aim is always to refine the features that made earlier editions so successful, while adding new ones.

Changes and Additions for This Ninth Edition

Text content has been updated for greater accuracy as a response to user feedback. Discussions of NMR spectroscopy and opportunities to practice mechanism problems have been expanded substantially for this ninth edition. Changes include:

- Discussions of interpreting mass spectra have been expanded with new spectroscopy problems included throughout the book.
- Discussions of the theory of nuclear magnetic resonance and interpretation of NMR data have been reorganized and expanded with new NMR problems.
- *Why This Chapter* now precedes the introduction in each chapter, immediately setting the context for what to expect.
- Mechanism problems at the ends of chapters are now grouped together so that they are easily located.
- Many new problems at the ends of chapters have been added, including 108 new mechanism-drawing practice problems and new spectroscopy and NMR problems.
- *Deeper Look* features have been changed to *Something Extra*, with updated coverage on each topic.
- Seven new Practice Your Scientific Analysis and Reasoning essays and corresponding questions modeled on professional tests such as the MCAT. Topics focus on the latest developments in the medical, pharmaceutical, or biological application of organic chemistry. Topics include: The Chiral Drug Thalidomide, From Mustard Gas to Alkylating Anticancer Drugs, Photodynamic Therapy (PDT), Selective Serotonin Reuptake Inhibitors (SSRIs), Thymine in DNA, Melatonin and Serotonin, and The Potent Antibiotic Traits of Endiandric Acid C.

In addition to seven new *Practice Your Scientific Analysis and Reasoning* sections, specific changes within individual chapters include:

- Chapter 2—*Polar Covalent Bonds; Acids and Bases.* Formal charge figures have been added for greater accuracy. New mechanism problems have been added at the end of the chapter.
- Chapter 3—Organic Compounds: Alkanes and Their Stereochemistry. Figures and steps for naming alkanes have been revised based on user feedback.
- Chapter 6—An Overview of Organic Reactions. New problems have been added to the end of the chapter, including new reaction mechanism problems.
- Chapter 7—*Alkenes: Structure and Reactivity.* Alkene Stereochemistry has been updated with expanded examples for practicing *E* and *Z* geometry. Additional practice problems on mechanisms have been added to the end of the chapter.
- Chapter 8—*Alkenes: Reactions and Synthesis.* New mechanism practice problems have been added at the end of the chapter.
- Chapter 9—*Alkynes: An Introduction to Organic Synthesis.* Sections on alkyne nomenclature and reactions of alkynes have been updated for greater accuracy. New mechanism problems have been added to the end of the chapter.
- Chapter 10—*Organohalides*. Suzuki–Miyaura reactions, curved-arrow drawings, and electron-pushing mechanisms are emphasized in new problems at the end of the chapter.
- Chapter 11—*Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations.* There are additional end-of-chapter problems, with particular focus on elimination-reaction mechanisms.
- Chapter 12—*Structure Determination: Mass Spectrometry and Infrared Spectroscopy.* Expanded discussion on interpreting mass spectra, additional examples, and new problems have been added.
- Chapter 13—Structure Determination: Nuclear Magnetic Resonance Spectroscopy. Discussions on the theory of nuclear magnetic resonance and the interpretation of NMR data have been expanded and reorganized, and new NMR problems have been added.
- Chapter 14—*Conjugated Compounds and Ultraviolet Spectroscopy.* New problems have been added to the end of the chapter, including mechanism problems.
- Chapter 15—*Benzene and Aromaticity.* The discussion of spectroscopic characterization of benzene derivatives has been expanded. New mechanism and spectroscopy problems have been added to the end of the chapter.
- Chapter 16—*Chemistry of Benzene: Electrophilic Aromatic Substitution.* New problems have been added to the end of the chapter, including mechanism practice problems.
- Chapter 17—*Alcohols and Phenols.* New spectroscopy examples and problems have been added, along with new mechanism problems at the end of the chapter.
- Chapter 18—*Ethers and Epoxides; Thiols and Sulfides.* New spectroscopy examples and problems have been added, along with new mechanism problems at the end of the chapter.

- Chapter 19—*Aldehydes and Ketones: Nucleophilic Addition Reactions.* The discussion of IR and NMR spectroscopy of aldehydes/ketones has been expanded. New NMR problems and mechanism practice problems have been added.
- Chapter 20—*Carboxylic Acids and Nitriles.* The discussion of IR and NMR spectroscopy of carboxylic acid has been updated. New problems have been added to the end of the chapter, including mechanism and spectroscopy problems.
- Chapter 21—*Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions.* The discussion of electronic effects in the IR and NMR spectroscopy of carboxylic acid derivatives has been expanded with two new end-of-chapter IR spectroscopy problems, along with new mechanism problems. Four new worked examples on synthesizing esters, amides, and amines have also been added.
- Chapter 22 and Chapter 23—*Carbonyl Alpha-Substitution Reactions; Carbonyl Condensation Reactions.* New problems have been added to the end of the chapter, including additional mechanism practice problems.
- Chapter 24—*Amines and Heterocycles.* The discussion of IR and NMR spectroscopy of amines has been updated, and new spectroscopy and mechanism practice problems have been added to the end of the chapter.
- Chapter 25—*Biomolecules: Carbohydrates.* The coverage of other important carbohydrates was expanded, and the worked examples related to drawing Fischer projections were revised.
- Chapter 26—*Biomolecules: Amino Acids, Peptides, and Proteins.* The *Something Extra* feature on the Protein Data Bank was revised and updated to make it more current.
- Chapter 28—*Biomolecules: Nucleic Acids.* Content on DNA sequencing and DNA synthesis was updated and revised.

Features

- The "Why This Chapter?" section is a short paragraph that appears before the introduction to every chapter and tells students why the material about to be covered is important.
- Each Worked Example includes a Strategy and a detailed Solution and is followed by problems for students to try on their own. This book has more than 1800 in-text and end-of-chapter problems.
- An overview chapter, *A Preview of Carbonyl Chemistry*, follows Chapter 18 and emphasizes the idea that studying organic chemistry requires both summarizing and looking ahead.
- The *Visualizing Chemistry Problems* that begin the exercises at the end of each chapter offer students an opportunity to see chemistry in a different way by visualizing molecules rather than by simply interpreting structural formulas.
- New *Mechanism Problems* sections were added to the end-of-chapter problems for most of the chapters. Mechanism-type problems are now grouped together under this topic title.

- The new *Practice Your Scientific Analysis and Reasoning* feature provides two-page essays and corresponding professional exam-style questions on special topics related to medical, pharmaceutical, and biological applications of organic chemistry. These sections are located at various points throughout the book. Essays and questions touch on organic chemistry content from preceding chapters. The multiple-choice format of the questions is modeled on professional exams such as the MCAT. The focus is on reinforcing the foundations of organic chemistry through practical application and real-world examples.
- Applied essays called *Something Extra* complement the text and highlight applications to chemistry. They include, "Where Do Drugs Come From?" in Chapter 6 and "Molecular Mechanics" in Chapter 4.
- *Summaries* and *Key Word* lists help students by outlining the key concepts of each chapter.
- *Summaries of Reactions* at the ends of appropriate chapters bring together the key reactions from the chapter in one complete list.

Alternate Editions

Organic Chemistry, Ninth Edition Hybrid Version with Access (24 months) to OWLv2 with MindTap Reader

ISBN: 9781305084445

This briefer, paperbound version of *Organic Chemistry*, Ninth Edition does not contain the end-of-chapter problems, which can be assigned in OWL, the online homework and learning system for this book. Access to OWLv2 and the MindTap Reader eBook is included with the Hybrid version. The MindTap Reader version includes the full text, with all end-of-chapter questions and problem sets.

Supporting Materials

Please visit http://www.cengage.com/chemistry/mcmurry/oc9e to learn about student and instructor resources for this text, including custom versions and laboratory manuals.

Special Contributions

This revision would not have been possible without the work of several key contributors. Special thanks go to KC Russell of Northern Kentucky University for writing the many new mechanism questions that appear in this edition; to James S. Vyvyan of Western Washington University for reshaping the NMR and spectroscopy discussions and corresponding problems throughout the book; to Andrew Frazer of the University of Central Florida for creating the new *Practice Your Scientific Analysis and Reasoning* sections and Gordon W. Gribble of Dartmouth College for assisting in their development; and to Jordan

L. Fantini of Denison University for carefully reviewing the new material and incarnations of the manuscript as it made its way through production.

Reviewers

This book has benefited greatly from the helpful comments and suggestions of those who have reviewed it. They include:

Reviewers of the Ninth Edition

Peter Bell, Tarleton State University Andrew Frazer, University of Central Florida Stephen Godleski, State University of New York–Brockport Susan Klein, Manchester College Barbara Mayer, California State University–Fresno James Miranda, Sacramento State University Pauline Schwartz, University of New Haven Gabriela Smeureanu, Hunter College Douglas C. Smith, California State University–San Bernardino Linfeng Xie, University of Wisconsin–Oshkosh Yan Zhao, Iowa State University

Reviewers of the Eighth Edition

Andrew Bolig, San Francisco State University Indraneel Ghosh, University of Arizona Stephen Godleski, State University of New York–Brockport Gordon Gribble, Dartmouth College Matthew E. Hart, Grand Valley State University Darren Johnson, University of Oregon Ernest G. Nolen, Colgate University Douglas C. Smith, California State University–San Bernardino Gary Sulikowski, Vanderbilt University Richard Weiss, Georgetown University Yan Zhao, Iowa State University

Reviewers of the Seventh Edition

Arthur W. Bull, Oakland University Robert Coleman, Ohio State University Nicholas Drapela, Oregon State University Christopher Hadad, Ohio State University Eric J. Kantorowski, California Polytechnic State University James J. Kiddle, Western Michigan University Joseph B. Lambert, Northwestern University Dominic McGrath, University of Arizona Thomas A. Newton, University of Southern Maine Michael Rathke, Michigan State University Laren M. Tolbert, Georgia Institute of Technology

Structure and Bonding

The enzyme HMG–CoA reductase, shown here as a so-called ribbon model, catalyzes a crucial step in the body's synthesis of cholesterol. Understanding how this enzyme functions has led to the development of drugs credited with saving millions of lives.

WHY THIS **CHAPTER?**

We'll ease into the study of organic chemistry by first reviewing some ideas about atoms, bonds, and molecular geometry that you may recall from your general chemistry course. Much of the material in this chapter and the next is likely to be familiar to you, but it's nevertheless a good idea to make sure you understand it before moving on.

What is organic chemistry, and why should you study it? The answers to these questions are all around you. Every living organism is made of organic chemicals. The proteins that make up your hair, skin, and muscles; the DNA that controls your genetic heritage; the foods that nourish you; and the medicines that heal you are all organic chemicals. Anyone with a curiosity about life and living things, and anyone who wants to be a part of the remarkable advances now occurring in medicine and the biological sciences, must first understand organic chemistry. Look at the following drawings for instance, which show the chemical structures of some molecules whose names might be familiar to you. Although the drawings may appear unintelligible at this point, don't worry. Before long, they'll make perfectly good sense, and you'll soon be drawing similar structures for any substance you're interested in.

CONTENTS

- 1-1 Atomic Structure: The Nucleus
- Atomic Structure: Orbitals 1-2
- 1-3 Atomic Structure: Electron Configurations
- 1-4 Development of Chemical Bonding Theory
- 1-5 Describing Chemical Bonds: Valence Bond Theory
- sp^3 Hybrid Orbitals and the 1-6 Structure of Methane
- 1-7 sp^3 Hybrid Orbitals and the Structure of Ethane
- 1-8 sp^2 Hybrid Orbitals and the Structure of Ethylene
- 1-9 sp Hybrid Orbitals and the Structure of Acetylene
- 1-10 Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur
- 1.11 **Describing Chemical** Bonds: Molecular Orbital Theory
- 1-12 Drawing Chemical Structures

SOMETHING EXTRA

Organic Foods: Risk versus Benefit

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsc

The foundations of organic chemistry date from the mid-1700s, when chemistry was evolving from an alchemist's art into a modern science. Little was known about chemistry at that time, and the behavior of the "organic" substances isolated from plants and animals seemed different from that of the "inorganic" substances found in minerals. Organic compounds were generally low-melting solids and were usually more difficult to isolate, purify, and work with than high-melting inorganic compounds.

To many chemists, the simplest explanation for the difference in behavior between organic and inorganic compounds was that organic compounds contained a peculiar "vital force" as a result of their origin in living sources. Because of this vital force, chemists believed, organic compounds could not be prepared and manipulated in the laboratory as could inorganic compounds. As early as 1816, however, this vitalistic theory received a heavy blow when Michel Chevreul found that soap, prepared by the reaction of alkali with animal fat, could be separated into several pure organic compounds, which he termed *fatty acids*. For the first time, one organic substance (fat) was converted into others (fatty acids plus glycerin) without the intervention of an outside vital force.

Animal fat
$$\xrightarrow{\text{NaOH}}_{\text{H}_2\text{O}}$$
 Soap + Glycerin
Soap $\xrightarrow{\text{H}_3\text{O}^+}$ "Fatty acids"

Little more than a decade later, the vitalistic theory suffered further when Friedrich Wöhler discovered in 1828 that it was possible to convert the "inorganic" salt ammonium cyanate into the "organic" substance urea, which had previously been found in human urine.

$$NH_4^+ \xrightarrow{O}CN \xrightarrow{Heat} H_2N \xrightarrow{O} H_2$$

mmonium cyanate Urea

By the mid-1800s, the weight of evidence was clearly against the vitalistic theory and it was clear that there was no fundamental difference between organic and inorganic compounds. The same fundamental principles explain the behaviors of all substances, regardless of origin or complexity. The only distinguishing characteristic of organic compounds is that all contain the element carbon.

Organic chemistry, then, is the study of carbon compounds. But why is carbon special? Why, of the more than 50 million presently known chemical

A

compounds, do most of them contain carbon? The answers to these questions come from carbon's electronic structure and its consequent position in the periodic table (FIGURE 1-1). As a group 4A element, carbon can share four valence electrons and form four strong covalent bonds. Furthermore, carbon atoms can bond to one another, forming long chains and rings. Carbon, alone of all elements, is able to form an immense diversity of compounds, from the simple methane, with one carbon atom, to the staggeringly complex DNA, which can have more than *100 million* carbons.

Group	0																
1A																	8A
н	2A											3A	4A	5A	6A	7A	He
Li	Be											В	с	N	ο	F	Ne
Na	Mg											AI	Si	Р	S	СІ	Ar
к	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															

FIGURE 1-1 The position of **carbon** in the periodic table. Other elements commonly found in organic compounds are shown in the colors typically used to represent them.

3

Of course, not all carbon compounds are derived from living organisms. Modern chemists have developed a remarkably sophisticated ability to design and synthesize new organic compounds in the laboratory—medicines, dyes, polymers, and a host of other substances. Organic chemistry touches the lives of everyone; its study can be a fascinating undertaking.

1-1 Atomic Structure: The Nucleus

As you probably know from your general chemistry course, an atom consists of a dense, positively charged nucleus surrounded at a relatively large distance by negatively charged electrons (FIGURE 1-2). The nucleus consists of subatomic particles called protons, which are positively charged, and neutrons, which are electrically neutral. Because an atom is neutral overall, the number of positive protons in the nucleus and the number of negative electrons surrounding the nucleus are the same.

FIGURE 1-2 A schematic view of an atom. The dense, positively charged nucleus contains most of the atom's mass and is surrounded by negatively charged electrons. The threedimensional view on the right shows calculated electron-density surfaces. Electron density increases steadily toward the nucleus and is 40 times greater at the blue solid surface than at the gray mesh surface. Although extremely small—about 10^{-14} to 10^{-15} meter (m) in diameter the nucleus nevertheless contains essentially all the mass of the atom. Electrons have negligible mass and circulate around the nucleus at a distance of approximately 10^{-10} m. Thus, the diameter of a typical atom is about 2×10^{-10} m, or 200 picometers (pm), where 1 pm = 10^{-12} m. To give you an idea of how small this is, a thin pencil line is about 3 million carbon atoms wide. Many organic chemists and biochemists, particularly in the United States, still use the unit *angstrom* (Å) to express atomic distances, where 1 Å = 100 pm = 10^{-10} m, but we'll stay with the SI unit picometer in this book.

A specific atom is described by its *atomic number* (Z), which gives the number of protons (or electrons) it contains, and its *mass number* (A), which gives the total number of protons and neutrons in its nucleus. All the atoms of a given element have the same atomic number—1 for hydrogen, 6 for carbon, 15 for phosphorus, and so on—but they can have different mass numbers depending on how many neutrons they contain. Atoms with the same atomic number but different mass numbers are called **isotopes**.

The weighted-average mass in atomic mass units (amu) of an element's naturally occurring isotopes is called atomic mass (or atomic weight)— 1.008 amu for hydrogen, 12.011 amu for carbon, 30.974 amu for phosphorus, and so on. Atomic masses of the elements are given in the periodic table in the front of this book.

1-2 Atomic Structure: Orbitals

How are the electrons distributed in an atom? You might recall from your general chemistry course that, according to the quantum mechanical model, the behavior of a specific electron in an atom can be described by a mathematical expression called a *wave equation*—the same type of expression used to describe the motion of waves in a fluid. The solution to a wave equation is called a *wave function*, or **orbital**, and is denoted by the Greek letter psi (ψ).

By plotting the square of the wave function, ψ^2 , in three-dimensional space, an orbital describes the volume of space around a nucleus that an electron is most likely to occupy. You might therefore think of an orbital as looking like a photograph of the electron taken at a slow shutter speed. In such a photo, the orbital would appear as a blurry cloud, indicating the region of space where the electron has been. This electron cloud doesn't have a sharp boundary, but for practical purposes we can set its limits by saying that an orbital represents the space where an electron spends 90% to 95% of its time.

What do orbitals look like? There are four different kinds of orbitals, denoted *s*, *p*, *d*, and *f*, each with a different shape. Of the four, we'll be concerned primarily with *s* and *p* orbitals because these are the most common in organic and biological chemistry. An *s* orbital is spherical, with the nucleus at its center; a *p* orbital is dumbbell-shaped; and four of the five *d* orbitals are cloverleaf-shaped, as shown in **FIGURE 1-3**. The fifth *d* orbital is shaped like an elongated dumbbell with a doughnut around its middle.

The orbitals in an atom are organized into different **electron shells**, centered around the nucleus and having successively larger size and energy. Different shells contain different numbers and kinds of orbitals, and each orbital

A d orbital

1-2 ATOMIC STRUCTURE: ORBITALS

within a shell can be occupied by two electrons. The first shell contains only a single s orbital, denoted 1s, and thus holds only 2 electrons. The second shell contains one 2s orbital and three 2p orbitals and thus holds a total of 8 electrons. The third shell contains a 3s orbital, three 3p orbitals, and five 3d orbitals, for a total capacity of 18 electrons. These orbital groupings and their energy levels are shown in **FIGURE 1-4**.

3р

A p orbital

An s orbital

		3 <i>s</i>	++-
Energy	2nd shell (<i>capacity</i> —8 electrons)	2p 2s	
	1st shell (<i>capacity</i> —2 electrons)	1 <i>s</i>	

3rd shell

(capacity-18 electrons)

The three different p orbitals within a given shell are oriented in space along mutually perpendicular directions, denoted p_x , p_v , and p_z . As shown in FIGURE 1-5, the two lobes of each p orbital are separated by a region of zero electron density called a **node**. Furthermore, the two orbital regions separated by the node have different algebraic signs, + and -, in the wave function, as represented by the different colors in Figure 1-5. We'll see in Section 1-11 that these algebraic signs for different orbital lobes have important consequences with respect to chemical bonding and chemical reactivity.

> **FIGURE 1-5** Shapes of the 2p orbitals. Each of the three mutually perpendicular, dumbbellshaped orbitals has two lobes separated by a node. The two lobes have different algebraic signs in the corresponding wave function, as indicated by the different colors.

> **FIGURE 1-4** The energy levels of electrons in an atom. The first shell holds a maximum of 2 electrons in one 1s orbital; the second shell holds a maximum of 8 electrons in one 2s and three 2p orbitals; the third shell holds a maximum of 18 electrons in one **3s**, three **3***p*, and five **3***d* orbitals; and so on. The two electrons in each orbital are represented by up and down arrows, $\uparrow \downarrow$. Although not shown, the energy level of the 4s orbital falls between 3p and 3d.

> FIGURE 1-3 Representations of s, p, and d orbitals. An s orbital is spherical, a p orbital is dumbbellshaped, and four of the five d orbitals are cloverleaf-shaped. **Different lobes** of *p* and *d* orbitals are often drawn for convenience as teardrops, but their actual shape is more like that of a doorknob, as indicated.

1-3 Atomic Structure: Electron Configurations

The lowest-energy arrangement, or ground-state electron configuration, of an atom is a listing of the orbitals occupied by its electrons. We can predict this arrangement by following three rules.

RULE 1

The lowest-energy orbitals fill up first, according to the order $1s \rightarrow 2s \rightarrow$ $2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d$, a statement called the Aufbau principle. Note that the 4*s* orbital lies between the 3*p* and 3*d* orbitals.

RULE 2

Electrons act in some ways as if they were spinning around an axis, somewhat like how the earth spins. This spin can have two orientations, denoted as up (\uparrow) and down (\downarrow). Only two electrons can occupy an orbital, and they must be of opposite spin, a statement called the Pauli exclusion principle.

RULE 3

If two or more empty orbitals of equal energy are available, one electron occupies each with spins parallel until all orbitals are half-full, a statement called Hund's rule.

Some examples of how these rules apply are shown in TABLE 1-1. Hydrogen, for instance, has only one electron, which must occupy the lowest-energy orbital. Thus, hydrogen has a 1s ground-state configuration. Carbon has six electrons and the ground-state configuration $1s^2 2s^2 2p_x^{-1} 2p_y^{-1}$, and so forth. Note that a superscript is used to represent the number of electrons in a particular orbital.

PROBLEM 1-1

Give the ground-state electron configuration for each of the following elements:

(a) Oxygen (b) Nitrogen (c) Sulfur

PROBLEM 1-2

How many electrons does each of the following elements have in its outermost electron shell?

(a) Magnesium (b) Cobalt (c) Selenium

TABLE 1-1 Ground-State Electron Configurations of Some Elements								
Element	Atomic number	Configuration	Element	Atomic number	Configuration			
Hydrogen	1	1 <i>s</i> ↑	Phosphorus	15	3p <u>↑</u> <u>↑</u> <u>↑</u>			
Carbon	6	2p 🕂 🕂 —			3 <i>s</i> 1 ↓			
		2 <i>s</i> 1 ↓			2 <i>p</i> <u></u>			
		1 <i>s</i> <u>↑↓</u>			2 <i>s</i> 🕕			
					1 <i>s</i> 1↓			

1-4 Development of Chemical Bonding Theory

By the mid-1800s, the new science of chemistry was developing rapidly and chemists had begun to probe the forces holding compounds together. In 1858, August Kekulé and Archibald Couper independently proposed that, in all organic compounds, carbon is *tetravalent*—it always forms four bonds when it joins other elements to form stable compounds. Furthermore, said Kekulé, carbon atoms can bond to one another to form extended chains of linked atoms. In 1865, Kekulé provided another major advance when he suggested that carbon chains can double back on themselves to form *rings* of atoms.

Although Kekulé and Couper were correct in describing the tetravalent nature of carbon, chemistry was still viewed in a two-dimensional way until 1874. In that year, Jacobus van 't Hoff and Joseph Le Bel added a third dimension to our ideas about organic compounds when they proposed that the four bonds of carbon are not oriented randomly but have specific spatial directions. Van 't Hoff went even further and suggested that the four atoms to which carbon is bonded sit at the corners of a regular tetrahedron, with carbon in the center.

A representation of a tetrahedral carbon atom is shown in **FIGURE 1-6**. Note the conventions used to show three-dimensionality: solid lines represent bonds in the plane of the page, the heavy wedged line represents a bond coming out of the page toward the viewer, and the dashed line represents a bond receding back behind the page, away from the viewer. These representations will be used throughout the text.

FIGURE 1-6 A representation of a tetrahedral carbon atom. The solid lines represent bonds in the plane of the paper, the heavy wedged line represents a bond coming out of the plane of the page, and the dashed line represents a bond going back behind the plane of the page.

Why, though, do atoms bond together, and how can bonds be described electronically? The *why* question is relatively easy to answer: atoms bond together because the compound that results is more stable and lower in energy than the separate atoms. Energy—usually as heat—always flows out of the chemical system when a bond forms. Conversely, energy must be put into the chemical system to break a bond. Making bonds always releases energy, and breaking bonds always absorbs energy. The *how* question is more difficult. To answer it, we need to know more about the electronic properties of atoms.

We know through observation that eight electrons (an electron *octet*) in an atom's outermost shell, or **valence shell**, impart special stability to the noblegas elements in group 8A of the periodic table: Ne (2 + 8); Ar (2 + 8 + 8); Kr (2 + 8 + 18 + 8). We also know that the chemistry of main-group elements

carbon atom

is governed by their tendency to take on the electron configuration of the nearest noble gas. The alkali metals in group 1A, for example, achieve a noble-gas configuration by losing the single *s* electron from their valence shell to form a cation, while the halogens in group 7A achieve a noble-gas configuration by gaining a *p* electron to fill their valence shell and form an anion. The resultant ions are held together in compounds like Na⁺ Cl⁻ by an electrostatic attraction that we call an *ionic bond*.

But how do elements closer to the middle of the periodic table form bonds? Look at methane, CH_4 , the main constituent of natural gas, for example. The bonding in methane is not ionic because it would take too much energy for carbon $(1s^2 2s^2 2p^2)$ either to gain or lose four electrons to achieve a noble-gas configuration. As a result, carbon bonds to other atoms, not by gaining or losing electrons, but by sharing them. Such a shared-electron bond, first proposed in 1916 by G. N. Lewis, is called a **covalent bond**. The neutral collection of atoms held together by covalent bonds is called a **molecule**.

A simple way of indicating the covalent bonds in molecules is to use what are called *Lewis structures*, or **electron-dot structures**, in which the valenceshell electrons of an atom are represented as dots. Thus, hydrogen has one dot representing its 1s electron, carbon has four dots $(2s^2 2p^2)$, oxygen has six dots $(2s^2 2p^4)$, and so on. A stable molecule results whenever a noble-gas configuration is achieved for all the atoms—eight dots (an octet) for main-group atoms or two dots for hydrogen. Simpler still is the use of *Kekulé structures*, or **linebond structures**, in which a two-electron covalent bond is indicated as a line drawn between atoms.

The number of covalent bonds an atom forms depends on how many additional valence electrons it needs to reach a noble-gas configuration. Hydrogen has one valence electron (1s) and needs one more to reach the helium configuration (1s²), so it forms one bond. Carbon has four valence electrons ($2s^2 2p^2$) and needs four more to reach the neon configuration ($2s^2 2p^6$), so it forms four bonds. Nitrogen has five valence electrons ($2s^2 2p^3$), needs three more, and forms three bonds; oxygen has six valence electrons ($2s^2 2p^4$), needs two more, and forms two bonds; and the halogens have seven valence electrons, need one more, and form one bond.

Valence electrons that are not used for bonding are called **lone-pair electrons**, or *nonbonding electrons*. The nitrogen atom in ammonia, NH₃, for instance, shares six valence electrons in three covalent bonds and has its remaining two valence electrons in a nonbonding lone pair. As a time-saving shorthand, nonbonding electrons are often omitted when drawing line-bond structures, but you still have to keep them in mind since they're often crucial in chemical reactions.

Predicting the Number of Bonds Formed by an Atom

How many hydrogen atoms does phosphorus bond to in forming phosphine, PH??

Strategy

Identify the periodic group of phosphorus, and find from that how many electrons (bonds) are needed to make an octet.

Solution

Phosphorus is in group 5A of the periodic table and has five valence electrons. It thus needs to share three more electrons to make an octet and therefore bonds to three hydrogen atoms, giving PH_3 .

Drawing Electron-Dot and Line-Bond Structures	Worked Example 1-2
---	--------------------

Draw both electron-dot and line-bond structures for chloromethane, CH₃Cl.

Strategy

Remember that a bond—that is, a pair of shared electrons—is represented as a line between atoms.

Solution

Hydrogen has one valence electron, carbon has four valence electrons, and chlorine has seven valence electrons. Thus, chloromethane is represented as

PROBLEM 1-3

Draw a molecule of chloroform, CHCl₃, using solid, wedged, and dashed lines to show its tetrahedral geometry.

Worked Example 1-1